
Exploring Dance Expression Through Self-Supervised Transformer-Based
Contrastive Representation Learning

Samuel Tong
Stanford University

samtong@stanford.edu

Abstract

In this project, I explore modeling dance expression
in video through self-supervised contrastive representa-
tion learning. I specifically focus on learning a model
that projects K-Pop (Korean Pop) dance group videos
into a high-dimension embedding space to encode group
dance expression, as well as choreography-specific (video-
specific) dance expression. In this report, I detail the end-
to-end process of dataset preprocessing and collection, fea-
ture extraction, and model architecture. I end with an anal-
ysis, focusing in part on the implications and limitations of
scale within this project as well as possible future work.

1. Introduction

The intersection of dance and computer vision heavily
emphasizes the objective of motion recognition and analy-
sis. But from an artistic lens, dance is much more than pure
motion: it is a human-centric form of expression, style, and
creativity. In some sense, movement classification reduces
dance down to a detached, highly logical objective, perhaps
ignoring some of the inherent emotion and feeling that is
central to dance as an art.

In this project, I propose shifting away from classifica-
tion of dance movement, and instead a turning towards an
objective of comparing relative dance expression. While a
somewhat broad term, I refer to expression as the abstract,
human-centered tendencies within a dance performance
that drives our conceptualized identity of a performance
or performer. Expression, in that sense, differs from pure
”movement” in that it is not a specific sequence of motions;
it is how those motions are embodied and expressed and
brought to life.

In this project, I utilize contrastive representation
learning to create a model that learns embedding vector
of a dance’s movement expressions with respect to a

dancer or group of dancers (analogous to learned token
embeddings for large language models). I focus specif-
ically on learned representations within K-Pop (Korean
Pop) dance. In addition to growing as a popular global
phenomenon in recent years, K-Pop dance is a fusion of
various dance styles, borrowing from genres including hip
hop, contemporary, jazz, etc. To that end, K-Pop dance is
not discretely classifiable into a single existing genre of
dance movement, thus providing nuance and variance in its
style. Further, each K-Pop group (generally comprised of
multiple members) carries their own unique, differentiating
dance style and expression, creating a grounded ”identity”
of the group and its members with respect to their dance
performance.

As a concrete objective, the model should be able to take
a new, unseen video example and output an embedding rep-
resentation that can be compared in similarity to embedded
dataset examples, both at a video level (e.g. ”this person
dances in the style of [dance video] by [K-Pop group]”), as
well as at a group level (e.g. ”this person generally dances
in the style of [K-Pop group]”). Note that the phrase ”in the
style of” is inherently abstract and somewhat ambiguous;
indeed, it could encompass a range of factors including
the stylistic tendencies of the dancers (both K-Pop group
members, as well as any backup dancers that appear in
the video), the choreographer, the genre of the dance
choreography, etc. Part of the curious nature of this project
is seeing what aspects of the video examples the model will
learn to differentiate, embed on, and prioritize.

2. Related Work

Dance movement has been a widely studied domain in
context of deep learning and computer vision, with objec-
tive tasks ranging from choreography creation to dance per-
formance analysis [2]. One prominent objective is move-
ment classification, in which models are trained to classify
dance movement given a video example. Previous works

1



in this domain explore various architectural implementa-
tions: for example, [6] classifies movement by extracting
features with a multi-layer convolution, then passing fea-
tures through an LSTM architecture. [3] takes a differ-
ent approach, using a grayscale and background subtraction
pipeline to generate dancer silhouettes, which are passed
through an unsupervised self-organizing map neural net-
work. Further, [7] and [8] both attempt to predict dancers’
Laban movements (a general notation for describing human
movement [11], analogous to sheet music notation for mu-
sical performance), but their architectural implementations
differ. Namely, [7] uses pose estimation as features then
passes through an attention and CNN layer, while [8] com-
bines human body fitting (via pose estimation) and point
cloud floor estimation to predict Laban movements.

3. Dataset and features

To my knowledge, there are no K-Pop specific video
datasets to meet the needs of this project. Additionally,
existing dance datasets (such as AIST++), while extensive
and large, do not meet the desired requirements of a
collective group ”identity” expression throughout video
examples. To this end, I collected my own dataset by
scraping K-Pop dance practice videos from YouTube.

My dataset contains video examples from YouTube
from the following K-Pop groups: BTS, ATEEZ, Stray
Kids, NCT 127, ENHYPEN, and TOMORROW X TO-
GETHER. Conveniently, these groups provide official
curated YouTube playlists of all prior dance practices,
which I use to determine which videos to scrape. Since
some videos within playlists are formatted as YouTube
Shorts (which generally showcase small snippets of a full
dance practice video for promotional purposes), I filter
videos from the playlists that do not meet a minimum time
length of at least 1 minute and 15 seconds (since dance
practice videos match the length of their corresponding
song, full videos are generally least 2 minutes in duration).

I scraped dataset videos using the Python library
yt-dlp and stored videos as mp4 files in a private AWS S3
bucket. The dataset contains approximately 300 videos for
a total of 19 hours of video. Each video example is stored in
full as an mp4 file, and has a corresponding JSON metadata
file listing the video title, author, length, and playlist from
which it was sourced.

4. Methods

For this model, I use keypoints extracted via pose
estimation as feature extraction. The primary motivation
for this approach is to encourage the model to focus
primarily on the dance movement, rather than extraneous

information. In particular, utilizing pose estimation instead
of RGB pixel values obfuscates the dancer’s identity,
forcing the model to learn based off of dancer movement
rather than memorizing physical appearances.

4.1. Sampling

For a given video, I uniformly sample examples (that is,
extracted keypoints for a sequence of frames) as follows.
Let t = 15 denote the total number of desired sampled
seconds per video, and let l = 2 denote the (upper bounded)
desired seconds per example. I uniformly sample from
⌊t/l⌋ = 7 regions per video (again, each of length l). I
additionally add a constant padding of p = 3 seconds both
at the beginning and end of the video to offset uniform
sampling, such that the sampling avoids potentially empty
space with no dance movement at the beginning and end.

Most videos in the dataset include multiple dancers
(note that the K-Pop groups used in dataset collection
range from five to ten total members). For a given region
(i.e. sequence of frames) we extract multiple examples,
one per visible dancer. Examples are expected to be
contiguous (i.e. non-disjoint), starting from the first frame
of the sampled region – that is, if a given dancer cannot
be tracked temporally within the example for a frame (e.g.
they are blocked by another dancer), we immediately stop
further sampling, and no future entries are appended to the
sequence (even if the dancer is visible again).

Let f denote a given video’s frame rate (that is, frames
per second). Because frame rates match the original
YouTube video frame rate and thus vary by video, we
sample every s frames, where s = max{1, ⌊f/30⌋}. In
particular, we see that for f < 60, s = 1 (i.e. we sample
every frame), but for 60 ≤ f < 120, s = 2 (i.e. we sample
every other frame). This ensures consistency such that the
model maintains rough temporal consistency within any
given sequence of frames 1. In total, each example has
up to (assuming the example is fully contiguous) (f · l/s)
frames; given that l = 2, a given example has up to 60
frames.

Finally, examples are labeled by both group ID (an alias
of the YouTube playlist from which the example’s video
was derived), and a video ID (the YouTube video ID from
which the example was taken).

1Here, we operate the assumption that the temporal differences be-
tween, say, f = 24 and f = 30 can be trivially learned by the model.
Also note that the speed with which a given dance is executed is depen-
dent on the tempo of the music, and we assume that the difference between
frames should be trivial in context of this additional variance in speed.

https://youtube.com/playlist?list=PL_G3lYLGW-D_QJqPAsZq8IoO_bwGXUvh7
https://youtube.com/playlist?list=PL_G3lYLGW-D_QJqPAsZq8IoO_bwGXUvh7
https://youtube.com/playlist?list=PL2HLJ87twWI0dRq6sCbvXU2lETU9sokd9
https://youtube.com/playlist?list=PL2HLJ87twWI0dRq6sCbvXU2lETU9sokd9
https://youtube.com/playlist?list=PLid_T3UdpOCAVE_J2Ca72ApMA-yTri3fx
https://youtube.com/playlist?list=PLMQ4WMltba-GNsXICbIPUpwS28YVEoe2F
https://youtube.com/playlist?list=PLcZxoPUYVQX2t6dT6PsSLo1j0Xbv7UBbd
https://youtube.com/playlist?list=PLcZxoPUYVQX2t6dT6PsSLo1j0Xbv7UBbd


4.2. Keypoint Extraction

For keypoint extraction, I use ViTPose[13], a
transformer-based pose estimation model. Because
ViTPose expects the person to be fully in frame at infer-
ence time, I first pass a given frame through DETR[1], a
transformer-based object detection model, to obtain bound-
ing boxes for each dancer in frame.2 DETR bounding boxes
were retained given a minimum score threshold of 0.75, and
tracked per dancer temporally using ByteTrack[14]. Each
example is outputted as a tensor of shape (num frames,
num keypoints, 2), where num keypoints = 17
(derived from the output of ViTPose), and (:, :, 0)
and (:, :, 1) denote the x and y pixel coordinates,
respectively.

This process yielded a total of 12,925 examples. In
order to minimize noise, I filtered examples that did not
meet the following requirements: 1) all keypoints across
frames for a given example must have a confidence score
(extracted from ViTPose) of at least 0.15; 2) the mean
confidence score across all keypoints in an example must
be at least 0.5; and 3) the total number of frames for an
example must be at least 18 (approximately 0.75 seconds at
24 FPS). Among the 12,925 examples, the filtering process
yielded a total of 5680 valid examples, for a retention rate
of 0.439. Of the filtered examples, 43.8% were filtered
for their lowest keypoint score (1), 0.4% for their mean
confidence score (2), and 43.6% for the total number of
frames (3). Notably, 12.5% were additionally filtered for
exceeding 60 total frames; I hypothesize that this is because
the average video FPS (computed using the Python library
OpenCV) was computed to be slightly under 60 FPS (e.g.
59 frames per second).

Finally, for a given example, I normalized each keypoint
value (i.e. the raw x/y pixel locations) relative to the value
of keypoint 16 (the last keypoint, corresponding to the right
foot) at the first frame, such that the tensor value at (0,
16, :) is (0, 0). This obfuscates the location of the
dancer within the entire frame, encouraging the model to
disregard this information as it learns.

4.3. Model

The model is given examples as tensors of size
(num frames, num keypoints, 2). Again note that an
example can have up to 60 frames; to account for this
variation, the remaining entries between num frames and
the maximum 60 frames are masked with zeros.

2I use the HuggingFace Transformers[12] mod-
els usyd-community/vitpose-base-simple and
PekingU/rtdetr r50vd coco o365 for DETR and ViTPose,
respectively.

The model first flattens examples into size
(num frames, num keypoints · 2), then passes the frames
through a linear transformation into the transformer em-
bedding space. From there, frames are attenuated via
a transformer block. The transformer output is finally
average pooled across frames, then passed through a final
fully connected layer to the embedding space.

Let xi denote the model output, and ygi , yvi denote the
group label and video id label, respectively. Then, for a
single batch B of size N , I utilize the following loss function
(adopted from [10]):

LB =

N−1∑
i=1

N∑
j=i+1

w · L(xi, xj , ygi , ygj )+

(1− w) · L(xi, xj , yvi
, yvj )

where w ∈ [0, 1], and L is defined as follows:

L(xi, xj , yi, yj) =1[yi = yj ]∥xi − xj∥22+
1[yi ̸= yj ] max(0, ϵ− ∥xi − xj∥2)2

In other words, LB computes the loss between every
combination of pairs of outputs in the batch. In particular,
note that we weight the loss of group labels and video
id labels by w and (1 − w), respectively, where w is a
tunable hyperparameter. Note that while the two objectives
(optimizing for group label, and optimizing for video
label) are not two completely distinct tasks (since a correct
video label implies a correct group label), intuitively this
weighting allows us to specify which aspect of embedding
representation learning the model should focus on.

While positive-pair losses (e.g. CLIP loss) are widely
used, I chose to utilize this contrastive loss function as the
dataset does not immediately lend itself to positive and neg-
ative pairs. In particular, because the model does not per-
form augmentations on examples, examples are not grouped
into pairs. While directly creating positive and negative
pairs and passing each into a batch is theoretically possible,
it is cumbersome with this architecture given that it would
be necessary to link pairs of examples per video (which fur-
ther implies that we will likely not see all the data in one
epoch if some video contain more corresponding examples
than others).

5. Experiments, Results, and Discussion
5.1. Metrics

In addition to the contrastive loss function defined above,
I measure the top-3 accuracy of the embedding outputs



Figure 1. Model architecture. Raw videos are uniformly sampled, then passed through the DETR and ViTPose models to extract bounding
boxes and pose estimation, respectively. This preprocessing pipeline yields a batch of sequences of frames, where each sequence entry
contains the extracted x/y keypoint coordinates. These frames are passed through a linear transform, a transformer architecture, and finally
outputted to the final embedding space.

with respect to both group and video id labels. Formally,
let ygi , yvi denote the ground truth group and video id la-
bels for example xi. Then, let Ygi = {yga , ygb , ygc} and
Yvi = {yva , yvb , yvc} denote the group and video id labels
(respectively) of the 3 closest embedding vectors to xi, de-
termined via cosine similarity. Then, we define the top-3
accuracy as follows:

Accg =
1

N

N∑
i=1

1[ygi ∈ Ygi ]

Accv =
1

N

N∑
i=1

1[yvi ∈ Yvi ]

5.2. Experiments and Results

I first conducted an informal, preliminary hyperparam-
eter search using Weights and Biases sweeps feature to
determine the approximate range of appropriate hyperpa-
rameters. Using this information, I then trained a baseline
model (see Table 1), using k-fold cross-validation (k = 5).
Note that each fold was shuffled and partitioned along
video ID, such that all examples corresponding to a single
video ID were placed in the same batch. This was done
to avoid leaking data from one batch to another, since
examples sampled from the same video region could have
multiple dancers performing the same move. While this
implies that each batch may be of a different size (given
that there are a varying number of examples corresponding

Hyperparameter Value Description
init lr 1e-4
eps 20 ϵ in loss eq.
loss weighting 0.33 w in loss eq.
num epochs 30
batch size 16
transformer dim 1024
transformer nheads 8
transformer ff dim 4096
transformer nblocks 8
transformer dropout 0.1
out embed dim 1024

Table 1. Baseline hyperparameters

to a single video), in practice the batch sizes were relatively
consistent3

Results of the baseline experiment are shown in Table
2, and Figures 2, 3, and 4. Note in particular that while
the training loss decreased, validation loss converged to
an order of magnitude higher than the training loss. In
addition, accuracies were predominantly constant and did
not improve over time.

As a qualitative metric, I ran PCA with n = 2 dimen-
sions to see if any visual patterns were emergent in the final
iteration. Specifically, I passed all examples (from both the

3In particular, batches were of sizes 1150, 1114, 1107, 1169, and 1140.



Metric Train Val
Loss 3.19e+3 4.40e+4
Top-3 Acc (group) 43.3% 44.0%
Top-3 Acc (video) 1.86% 6.97%

Table 2. Baseline results, averaged across folds

Figure 2. Baseline average loss

Figure 3. Baseline top-3 accuracy (group)

Figure 4. Baseline top-3 accuracy (video)

train and validation dataset) through the trained model, then
fit the resulting vectors via PCA, labeled by group. The re-
sults are shown in 5; while there appear to be two trend
directions (one moving horizontal, and the other moving
up and to the right), there is no clearly distinctive decision
boundary between groups as we would have hoped. There
are, however, two relevant observations. Firstly, (and per-
haps most immediately apparent), there is one large outlier

Figure 5. PCA analysis (n = 2), colored by group. For brevity, in
the legend I abbreviate group ”TOMORROW X TOGETHER” as
”txt,” and ”Stray Kids” as ”skz.”

belonging to the group ”ENHYPEN.” While it is not partic-
ularly apparent why it is so far removed, it follows the trend
direction of points moving up and to the right. Second,
the bottom-middle range of the scatterplot (approximately
x = −0.75, y = −1.5) seems to be a cluster that only in-
cludes three of the six groups (note that BTS, NCT 127,
and Stray Kids are not present), indicating that these exam-
ples from the present groups are particularly similar. Per-
haps these examples contained similar dance movements;
or, examples in this cluster belonging to the same group po-
tentially belonged to the same region of the same sampled
video.

5.3. Hyperparameter Tuning

Evidently, the baseline model in its current state was
not performant. To this end, I conducted subsequent
hyperparameter tuning experiments; in particular, I was
interested in the loss weighting hyperparameter w, and the
relative importance of prioritizing group loss (w → 1.0)
versus video ID loss (w → 0.0). In the baseline, I set
w = 0.33, hypothesizing that slightly weighting video ID
loss (a more difficult objective) over group loss would be
advantageous. In Table 3, I describe subsequent experi-
ments with varying values of w, with experiment trained for
15 epochs and without k-fold cross-validation for efficiency.

From the validation set results, it appears that as
loss weighting increases, the model generally performs
marginally better. However, given that the validation
dataset is relatively small (1000 examples), these metrics
are not robustly sound; to confidently verify, we would
need more data. It is also important to note that these
improvements are, again, marginal.



loss weighting Loss Group Acc* Video Acc*
0.0 4.6e+4 43.6% 4.9%
0.33 (baseline) 4.2e+4 43.3% 5.3%
0.66 4.1e+4 43.3% 5.3%
1.0 3.9e+4 45.3% 6.6%

Table 3. Hyperparameter tuning results. All metrics are in terms
of validation data.
*I calculate this with an exponential moving average (with a coef-
ficient of 0.5) as these values have especially high variance.

It is worth noting that I conducted additional informal
experiments on the side, including increasing transformer
dimensions, increasing the loss epsilon hyperparameter, and
doubling the batch size. However, none of these experi-
ments resulted in additional improvements that would merit
any further discourse.

5.4. Discussion

It appears that, while the model learned to reduce train-
ing loss over time, all other metrics stayed approximately
constant and did not improve. While this is somewhat
disappointing, there are many things we can still observe.
As mentioned previously, adjusting the loss weighting w
towards 1.0 resulted in some marginal improvement. It
is interesting that emphasizing group accuracy (a higher
w) also improved the model’s video accuracy; intuitively,
perhaps the group accuracy is a somewhat viable proxy
for improving video accuracy (a relatively harder task to
optimize, especially given the small dataset size).

Interestingly, the Top-3 video accuracy scored higher
on the validation than training dataset. This is likely
because examples were partitioned in folds by videos;
thus, a validation batch would be more likely to contain
examples with the same video id than a training batch of
the same size. Unfortunately, this is a suboptimal result of
the contrastive loss function design choice, as we do not
inherently have positive pairs and need to source them from
somewhere. We also note that the alternative (allowing
examples from the same video to be spread across batches)
could result in data leakage (again, since examples sampled
from the same region may have dancers performing the
same dance), which is not any more desirable.

While the results of the project did not show con-
vergence to a particularly insightful outcome, it is of
interest to discuss why this occurred. I hypothesize that
the quantity of data is likely the main bottleneck in model
performance (roughly, 5000 examples at two seconds each
is approximately 2 hours and 45 minutes of examples – a
relatively small dataset). Given more time and resources,
I would have hoped to collect more data (either at the

video scraping stage, or during example sampling). A
large inhibitor to scaling up data collection was DETR
and ViTPose inference: each frame took on the order of
0.1s to process through both models. While this would be
reasonably efficient at a small scale, this would have been
much more intensive to undertake with respect to time and
compute at a large scale (e.g. by this metric alone, col-
lecting one million examples would take at least 28.8 total
hours – and this is before filtering). Indeed, it took around
7 hours in total to collect the initial 12,000 examples.
The quantity of initial videos scraped from YouTube, too,
were also limited, as YouTube’s bot detection algorithm
blocked video downloads on EC2 servers; my workaround
was to download videos locally on my personal computer,
then upload back to a cloud server. But this too was slow
and expensive. Perhaps these challenges are excellent
learning opportunities to help understand the intricacies
and complexities of effective data collection at scale.

Some other limitations to note: because I defined clip
sampling regions by seconds (i.e. a desired 2 seconds per
clip) rather than by number of frames, the model might
have internalized some examples to be temporally faster or
slower than they actually were. As mentioned previously,
I hypothesized that 1) this would not make a marginal
difference as there is inherently variation in song tempo
(and subsequently, dance speed), and 2) even if it did
make a marginal difference, the transformer architecture
would be able to learn to ignore this. In hindsight however,
the latter hypothesis would be contingent on a sufficient
amount of data, which was not adequately presented to the
model.

More broadly beyond the pure outcomes of the experi-
ments, the process of creating an end-to-end pipeline from
data collection to fine-tuning was in itself an incredibly in-
sightful learning experience. While the results may not have
been what I had hoped, undertaking the (somewhat labo-
rious) process of scraping and curating data, determining
model architecture, and attempting to finetune hyperparam-
eters pushed me to learn a tremendous amount.

6. Conclusion and Future Work
In this report, I outline my process of an end-to-end

pipeline to create a transformer-based contrastive represen-
tation learning model, explaining my process and reflec-
tions from data collection, feature extraction, and hyperpa-
rameter tuning. While the model did not show particularly
satisfying results (I hypothesize in large part due to the scale
of the dataset), the project provides a baseline framework
that can be used and scaled by future research (additionally,
time permitting, I also hope to conduct additional exper-
iments before the poster session to achieve better perfor-



mance). As a whole, the intersection of dance expression
and deep learning is a unique application; within this space,
there is still much more to be learned, and much more po-
tential to be gleaned.

7. Contributions
All work was conducted by myself. A special thanks to

the TA’s for their invaluable guidance.

References
[1] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov,

and S. Zagoruyko. End-to-end object detection with trans-
formers, 2020. 3

[2] M. R. Nogueira, P. Menezes, and J. M. de Carvalho and.
Exploring the impact of machine learning on dance perfor-
mance: a systematic review. International Journal of Perfor-
mance Arts and Digital Media, 20(1):60–109, 2024. 1

[3] Y. Pang and Y. N. and. Dance video motion recognition
based on computer vision and image processing. Applied
Artificial Intelligence, 37(1):2226962, 2023. 2

[4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman,
G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and Édouard Duchesnay. Scikit-learn: Machine learning in
python, 2018.

[6] W. Qin and J. Meng. The research on dance motion quality
evaluation based on spatiotemporal convolutional neural net-
works. Alexandria Engineering Journal, 114:46–54, 2025. 2

[7] D. Sun and G. Wang. Deep learning driven multi-scale spa-
tiotemporal fusion dance spectrum generation network: A
method based on human pose fusion. Alexandria Engineer-
ing Journal, 107:634–642, 2024. 2

[8] M. Turab, P. Colantoni, D. Muselet, and A. Tremeau. Dance
style recognition using laban movement analysis, 2025. 2

[9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need, 2023.

[10] L. Weng. Contrastive representation learning, May 2021. 3
[11] Wikipedia. Labanotation — Wikipedia, the free encyclope-

dia. http://en.wikipedia.org/w/index.php?
title=Labanotation&oldid=1276233755, 2025.
[Online; accessed 16-May-2025]. 2

[12] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davi-
son, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing, 2020. 3

[13] Y. Xu, J. Zhang, Q. Zhang, and D. Tao. Vitpose: Simple vi-
sion transformer baselines for human pose estimation, 2022.
3

[14] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo,
W. Liu, and X. Wang. Bytetrack: Multi-object tracking by
associating every detection box, 2022. 3

http://en.wikipedia.org/w/index.php?title=Labanotation&oldid=1276233755
http://en.wikipedia.org/w/index.php?title=Labanotation&oldid=1276233755

